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Extremal collision sequences of particles on a line: Optimal transmission of kinetic energy
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The transmission of kinetic energy through chains of inelastically colliding spheres is investigated for the
case of constant coefficient of restituti@s const and impact-velocity-dependent coefficiefit) for vis-
coelastic particles. We derive a theory for the optimal distribution of particle masses which maximize the
energy transfer along the chain and check it numerically. We found thatfaonst, the mass distribution is
a monotonous function which does not depend on the value &f contrast, fore(v) the mass distribution
reveals a pronounced maximum, depending on the particle properties and on the chain length. The system
investigated demonstrates that even for small and simple systems, the velocity dependence of the coefficient of
restitution may lead to new effects with respect to the same systems under the simplifying approximation
e=const.
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I. INTRODUCTION Il. ELASTIC PARTICLES

The textbook problem of elastic collisions may serve us to
Chains of nonlinear interacting particles have long beerintroduce the notation. Assume particle O collides with the
of large great interest, and a variety of interesting effectgesting particle 1. Then after the collision, the velocity of
occurring in those systems has been described, such as sd¥article 1 is
tons, (e.g., [1]), energy localization(e.g., [2]), etc. In the
context of granular materials chains of inelastically colliding V)= Vo
particles have been investigated as model systems for shaken Mo+ My
granular materiale.g.,[3,4]), granular compactiof5], and
the “inelastic collapse”(e.g.,[6,7]). The kinetic theory of
one-dimensional granular systems has been addres$8d in
In this paper, we consider a linear chain of inelastically
colliding particles of massem; and radiiR; (i=0---n) n-1 -1
with initial velocities vo=v>0 andv;=0 (i=1---n) at vi=2"] <1+ mk“) Vo. 2
initial positions x;>x; for i>j with X, 1—=X>Ri;1+R; k=0 my
(Fig. 1. The masses of the first and last partialesandm,
are given and we address the following question: How hav i =10 '
the masses in between been chosen to maximize the energyVMi-1Mi+1 (i=2---n—1) maximizesv . If we fix mg
transfer from the first particle of the chain to the last one? 1R1d My, obviously the mass distribution
n is a variable, how shouldh be chosen to maximize the

2mg

@

(the primed variables refer to after-collisional velocijjend
for a chain ofn+1 particles of massesy,, mq, ... ,m,
one has analogous[y10]

For this system one finds easily that the choiog

k/n
after-collisional velocityv,, of the last particle. me= %) Mo 3
One can easily study the chains of ideally elastic spheres Mo
and of spheres interacting via a constant coefficient of reStiﬁ]aximizeSU’ .
tution. It is much more complicated to deal with chains of n
viscoelastic particles, which have an impact-velocity- 5 n
dependent coefficient ar_ld which, as we show below, exhibit vi=| ——r | vo. (4)
quite unexpected behavior. It has been demonstrated recently 14 ﬂ)
that the kinetic properties of “thermodynamically large” Mg

systems of viscoelastic particles differ significantly from

those of particles interacting with a constant coefficient ofThe functionR,=v /v, always increases with and has the

restitution [9]. The system considered in this paper maylimit

serve as an example of small system whose properties

change qualitatively when the viscoelastic properties of the R =

particles are taken into account explicitly. v
In the present study, the problem of the most efficient

energy transmission in a chain of particles of variable mass ise., if the masses of the particles are chosen according to Eq.

addressed. We analyze the optimal distribution for the par¢3), the kinetic energy of the first particle is completely trans-

ticle masses and calculate the optimal size of the system. ferred to the last one by a chain of infinite length.

!
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FIG. 1. Sketch.

For the case of dissipative collisions, an infinite chain
cannot be optimal since in each collision energy is dissi-
pated. Hence, we expect an optimum for the chain length for
which the velocity of the last particle reaches its maximum.

Il. PARTICLES WITH A CONSTANT RESTITUTION 1 ‘ ‘ . . .
COEFFICIENT 0 20 40 60 80 100
position i
Accordlng to our model, .the. partlcle§ ,COH'de lpalrvwse. FIG. 3. Velocity distribution of particles in chains with the op-
This allows us to use the restitution coefficient, which relate§imal mass distributiorigiven in Fig. 3 according to Eq(3). Each

the relative velocity of colliding particles andi+1 after  of the lines shows the velocity; over the index for a specified

collision to that before the collision: chain lengthn. The dissipative constant ts=(1—¢€)=5x10"4.
, , The last particle reaches its maximal velocity for chain length
_ Vit Vi ©6) =44 (bold drawn. The velocity of the first particle of the chain is
Vi+1—Uj ’ U():l.
Equation(1) turns then into Figure 2 shows the optimal mass distribution for different
chain lengthsn. The mass of the first particle mg=1 and
, l+te of the last particle isn,=0.1.
U1T T (my img) O (7 In the next section, we will consider particles which in-

teract via a velocity-dependent coefficient of restitution.
where we again assume that the particle with velagifand  Since the velocity of the particles varies for the particles of
massmy hits a particle of massy, at rest, which starts mov- the chain, we characterize the dissipation of the colliding
ing with the velocityv; . Straightforward generalization of spheres not by the coefficient of restitution itself but rather
the previous analysis for the case of the dissipative collisiongve define a dissipative constamtFor the case of a constant
with a constant coefficient of restitutioa shows that the coefficiente, it is defined ab=(1—¢).
optimal mass distribution is identical to that for the elastic In contrast to the mass distribution, the corresponding ve-
case(3). This means that the optimal mass distribution doedocity distributions do depend on the value of the restitution
not depend on the dissipationdf= const. The velocity of the coefficiente. Figures 3 and 4 show the velocity distribution
last particle in the chain reads for this case for two different values of the dissipative constaht=5
x 10~ % andb=0.032.
_ l+e For the case of dissipative collisions, the rati),
Un~ my| " vo- (8) =v//v, does not monotonously increase withbut rather it
( ) has an extremum which shifts to smaller chain lengths with
increasing dissipative parameter The optimal value o,
which maximizesR,,, reads

1.0
0.8 3t
E o6
-
0.4 2|
0.2
0 20 40 60 80 100 =
position i . _ . ‘ . .
FIG. 2. Optimal mass distributiom;, i=1---n, for the case 0 20 40 - 69 80 100

of a constant restitution coefficielat Each of the lines shows the position i
massm; over the index for a specified chain length The masses FIG. 4. Same as Fig. 3 but fdr=0.032. The optimal chain
of the first and last particles are fixedrmap=1 andm,=0.1. length isn* =12.
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10° ‘ ‘ ‘ 0.2
107 107 107 107
dissipative constant b 0 20 40 60 80 100
FIG. 5. The optimal chain length*, which gives the maximal position i
transmission of energy along the chain with the fixed first and last FIG. 6. Optimal mass distributiom;, i=1---n, for the case

masses, as a function of the dissipative parametefl—e€). The  of viscoelastic particles with the restitution coefficient given by Eq.
line shows the prediction of Eq9), with X, found numerically.  (14) with b=5x10"%. Each of the lines shows the mass over
Points refer to the results of a direct numerical optimization of thethe indexi for a specified chain length The masses of the first and

masses in the chain. last particles arenp=1 andm,=0.1.
In(m,,/my) constantsC;=1.15344 andC,=0.79826 were obtained
= Thixg) (9)  analytically in Ref.[12] and then confirmed by numerical
0 simulations.

For the following calculation we neglect tern@(v?)

and of higher orders. Moreover, we also assume for simplic-
Xo/(1+%0) (10) ity that all particles are of the same radiBsbut have dif-
ferent massegl4]. We abbreviate

wherexg is the solution of the equation

(1+X%0)=(1+ €)X

Correspondingly, the extremal value of tRe reads T
—1_ ij
1+eln e=1 b(meﬁ)2/5 (14)
R} = (11

1% with
In Fig. 5 the dependence of the extremélon the restitution 2/5
coefficient is shown. _ 3A 2 YVR/2

1/

IV. VISCOELASTIC PARTICLES S . o
Thus, the collision withe=const and given dissipative con-

A. Collisional law for the viscoelastic particles stantb, as introduced above, corresponde., has equal
It has been shown that for colliding viscoelastic spheresyalue ofe) to the viscoelastic collision with the sarbgwith
the restitution coefficient depends on the masses of the cownit effective massn®"=1 and unit relative velocity; .
liding particles and also on their relative velocity, [11]. Hence, for viscoelastic particles the velocity of the
An explicit expression for the coefficient of restitution is k+1st particle after colliding with th&th particle reads
given by the serief12,13

an a2 2—b( My 1+ My 2/50&/5
My 1M
e=1— Cl( >02/50ﬁ/5+ Cz(j) a4/51)ﬁ/5 - (12 e k+ 1Mk Dy (16)
1+ M1

with M

2v JRE The massem,, k=1---n—1, which maximizev;, can be
= (13  determined numerically and the results are shown in Figs. 6

3mef(1—-1?) and 7 for two different values of the dissipative constant

For small chain length or small, respectively, the opti-
whereY is the Young modulus and is the Poisson ratio. mal mass distribution is very close to that for the elastic
The effective mass and effective radius are define®#ds chain as shown in Fig. 2. Again, we find a monotonously
=RR;/(Ri+R;) andm®f= mym; /(m;+m;), whereR;;; and  decaying function for the masses. For larger chain lemgth
m;; are radii and masses of the colliding particles. The coner larger dissipatiorb, however, the mass distribution is a
stant A describing the dissipative properties of the spheresionmonotonous function. The according velocities of the
depends on material parametéfsr details, sed11]). The particles in chains of spheres of optimal masses are drawn in

021505-3



THORSTEN PGSCHEL AND NIKOLAI V. BRILLIANTOV PHYSICAL REVIEW E 63 021505

3
3 L
2 r 2
£ >
;
Ol
0 20 40 60 80 100 0 20 - 40 60 80 100
position i position i
FIG. 7. The same plot as Fig. 6 but for=2x 1072, FIG. 9. The same plot as Fig. 8 but for the mass distribution

according to Fig. 7 §=2x10"%). The optimal chain length is
Figs. 8 and 9. Note that the mass distribution and velocityn* = 20.
distribution are related by Eq16).

2
mil(mi_mil) 2

AED=1 e v? . (17)
in 2 i—1 2 mi+mi71 i—1-

B. Variational approach to the optimal mass distribution

In the following, we describe an approximative theory of For | h chai . he di
the optimal collision chain of viscoelastic particles. To this or long enough chains, we approximate the discrete mass
distribution by a continuous onen(x). This, with the as-

end we first evaluate the loss of kinetic energy in the chain; X ¢ I di . N
which we divide into two parts and term as “inertial” and SUMption - of “small mass gradients, givesy~m;_,
“viscous” losses. In our approach, we treat the part of thet [dM(x)/dx]1, where we assume that particles are sepa-

energy which is not transformed from the first particle of the't€d on %)I'”e by a unit distance. Within the continuum
chain to the last one as a “lost” energy. In this sense, thePiCture AE;’— (dEj,/dx)1, and we write for the “line den-
energy is “lost” according to two mechanisms. The first is sity” of the inertial loss, discarding high-order mass gradi-
due to a mismatch of subsequent masses, which causes fots,

complete transfer of momentum even for an elastic collision

when the masses difféthis part of the energy loss is called dm(x)|?
“inertial” ). The second refers to the dissipative nature of dE, dx 5
collisions and, therefore, this loss is called “viscous” below. ax ~ 8mX) v(X)*. (18

The inertial loss in the collision, attributed to the energy
transfer to theth particle, is thus given by the energy which

L . . . Vi I ribe the energy | rding to th
remains in the i(—1)st particle after the collision: scous losses describe the energy losses according to the

inelastic properties of the material, therefore they are equal
to the difference of the kinetic energy of a particle after an

elastic collision (with no dissipation and that after alissi-
3t pative collision,
2 2
AE(i-):mivi _mivi
VIS 2 a 2
— e=1 e=¢€(v))
>
2 _m; 2 2 ) m; [ 1+e(vi_y) )
2 m | V712 m, Vi-1
1+ 1+
mi_q m;_q
2
1 = - ) ‘ _ 2m|U|,l 1 9 mi+mi,l 2/501/5 2
0 20 40 60 80 100 )2 21 mm;_, =)
position i 1+ ——
i—1

FIG. 8. Velocity distribution for viscoelastic particles in chains
with the optimal mass distribution given in Fig. 6. Each of the lines
shows the velocity; over the index for a specified chain length o )
The dissipative constant is=5x 10 . The last particle reaches its NOW we assume that the dissipative parambter small, so
maximal velocity for the chain length* =36 (bold drawn. The  that one can keep only the linear term, eXpandi@‘i)s with
velocity of the first particle of the chain is,= 1. respect tab. Transforming then to continuous variables and

(19
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discarding terms which are productsiménd mass gradients

(which are also supposed to be smaiklds

dE; b
d)\(/ls ~ ZTlsmslsv 11/5 (20

Thus, the total energy loss in the entire chain reads

n
Ewor= f
0

wherem,=dnvdx. As it follows from Eq.(21), to evaluate
E.ot One needs the velocity distributier{x). As a zero-order

2
m
X
v 2 + m3/5U 11/5 d X,

gm’ T e 21)

approximation we use an “ideal chain ansatz.” This refers to
a velocity distributionv (x) in an idealized chain, where the

PHYSICAL REVIEW E 63 021505

position i

FIG. 10. Mass distribution in chains of viscoelastic particles of

kinetic energy completely transforms through the chain, i.e.jengthn=40 with optimal mass distribution for different values of

where m(x)v?(x) =const smgua. With me=1, vo=1,
so thatv (x) = 1/i/m(x), this ansatz yields

n
Ewot= f
0

The mass distribution which minimizds,; satisfies the Eu-
ler equation applied to the integrand in Eg2):

2
my b

23/5 m1/2 (22)

m)z( b 1

+
23/5 ml/2

=0. (23

the dissipative parametér Lines, results of the variational theory,
according to Eq(24); points, numerical optimizatioffrom top to
bottom: @, b=0.128; H, b=0.064; ¢, b=0.032; A, b
=0.016; «, b=0.008; ¥, b=0.004; », b=0.002; etc. As
previously,m; is the mass of théth particle along the chain.

B c
cosp= TR

The value of the constamt may be found from the second

where

(28)

Equation(23) leads to an equation for the mass distributionboundary conditiony(n)=1/m,, which yields a transcen-

of the optimal chain, written foy(x)=1/m(x):

d?y 1(dy

dx?  yldx

24
dx¢ Y 24

2
) _ 22/5by3/2: 0.

Multiplying Eq. (24) by 2(y'/y?) (y is always positivg we
recast Eq(24) into the form

d
LY/ 1y)?=4x2%%y'?]=0 (25)
which implies the first integral of this equation:
(y'ly)2—4x2%pyte=—¢, (26)

where the constant depends on parametdy, the chain
lengthn, and initial and final masses), andm,,. The form

of the solution depends on the sign of this constant. If th

mass distribution has an extremum xatx*, such that
m’(x*)=0 andy’(x*)=0, the constant is positive. This
follows from Eq. (26), i.e., c=4x2%%yYq(x*)>0, since
yY(x*) is positive.

The solution of thdirst-orderequation(26) may be found

straightforwardly. The general solution is somewhat lengthy
but for the case ofmy=1 (one can always use the appropri-

ate mass unit this readdqfor ¢>0)

2

y(x)=m(x) = , 27)

[ xe
94/5p2 cos T+<P

dental equation foc:

S(nJE) ( JE) [22%, 2%
co§ —— | —sinl n— —=1l=—m, "
2 2 c c

(29

The last equation has to be solved numerically. Instead, how-
ever, we solved numerically directly the initial differential
Eq. (24).

Note that some scaling properties of the solution may be
deduced just from the form of E€R4). Namely, as it follows
from this equation, the solution should depend on the re-
duced length variable\/b. Thus, the distribution of masses
for chains with different chain length and different dissi-
pative constanb should coincide after rescaling the particle
numbers as— +bi, provided the masses, andm, are the

Same for these chains. We will consider the scaling proper-

ties of the mass distribution in more detail later.

Figure 10 shows the optimal mass distribution for a chain
of length n=40 for different damping parametets The
lines display the(numerica) solution of the variation Eq.
(24), whereas the points show the results of a numerical op-
timization of the chain problem. For small dissipatigrboth
results agree.

For larger values dbf, the solution of the variational equa-
tion (24) deviates from the results of the numerical optimi-
zation. This follows from the fact that for largér the gra-
dients of the mass distribution are not small and our
variational approach loses its accuracy. Note, however, that

021505-5
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0 10 20 30 40 0 20 40 60
position i chain length n
FIG. 11. Same data and symbols as in Fig. 10 but plotted in a FIG._ 13. V(_elocny_of the last p_artl_cle,] for chains of V|§coelas-
larger scale. tic particles with optimal mass distribution over the chain length

for different values ob. As in Fig. 12, the velocity distribution was

) ) ~_ obtained from the mass distribution according to 8@, and lines
while the absolute values of the masses in the mass distribgom top to bottom correspond to=2.5x 1074, 5x10 4, 0.001,

tion deviate from that given by the variational approach, thisp.002, 0.004, 0.008, 0.016, 0.032, 0.064, and 0.128. Note that with
still predicts well the position of the maximum of the distri- increasing dissipative constabtthe maximum ofv,(n), which
bution. Figure 11 shows the same data as Fig. 10 but fotorresponds to the optimal chain length, shifts to smaller values
larger dissipation parametér of n, which means naturally that optimal chains are shorter for
Figure 12 displays the velocity distribution for the optimal larger dissipation.
chain with the mass distribution shown in Fig. 11. The data . )
given in Fig. 12 refer to the numerical optimization, where chain leads to a decrease of the_ viscous losses of the energy
Eq. (16), which relates velocity and mass distribution, is traqsfer. T_hg larger the masses in the middle and_the_smaller
used. According to the maximum in the mass distribution,the'r velocities, the less energy is lost due_ to dissipation. On
the velocity distribution reveals for largdr a pronounced the other hand, since masseg andm, are fixed, very large
minimum. masses in the middle of the chain will cause a large mass
One can give a simple physical explanation of the appearMismatch of the subsequent masses and thus large inertial
ance of a maximum in the mass distributi@nd correspond- 10ssegsee Eq(17)]. The optimal mass distribution minimiz-
ingly a minimum in the velocity distribution As it is seen N9 the total losses compromiseictated byb) between
from Eq. (14), the restitution coefficient increases with de- theése two opposite tendencies. For the case of a constant
creasing impact velocity and increasing masses of colliding0efficient of restitution, the relative part of the kinetic en-
particles this reduces the viscous losses. Thus slowing dow#fdy, which is lost due to dissipation, does not depend on the

particles, by increasing their masses in the inner part of thénpact velocity. This means that only minimization of the
inertial losses, caused by mass gradient, may play a role in

the optimization of the mass distribution. Thus only a mo-

notonous mass distribution with minimal mass gradients
along the chain may be observed as an optimal one for the
case of the constant restitution coefficient.

As in the case of the constant restitution coefficient, the
velocity of the last particle;, of an optimal chain depends
onn. For short chaingwith my,m, fixed), the mass gradient
of adjacent particles is large, hence inertia losses are large as
well. For very long chains, viscous losses become large.
Hence, we expect that among the optimal chains there exists
a chain with a certain length* which allows for an optimal
transmission of kinetic energy from the first particle to the
last one. Figure 13 shows the velocity of the last particle for

position i chains with optimal mass distribution as a function of the

FIG. 12. The velocity distribution in chains of viscoelastic par- chain lengthn for different values of the dissipative param-
ticles of lengthn=40 with the optimal mass distribution according etert_). _Naturally, as for thg case of the_ constant restitution
to Fig. 11 for different values of the dissipative constantines  CcOefficient, the optimal chain lengti™ shifts to smaller val-
from top to bottomb=2.5x 104, 5x 104, 0.001, 0.002, 0.004, Ues with increasing dissipative constant
0.008, 0.016, 0.032, 0.064, and 0.128. The velocity distribution is Having the mass distribution and the velocity distribution
obtained from the mass distributiggiven in Fig. 11 according to ~ obtained from the numerical optimization one can check di-
Eq. (16). As previously,v; is the velocity of theth particle along  rectly the validity of the “ideal chain ansatz,’v(x)
the chain. =1/ym(x), used in the variational approach. In Fig. 14, we
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implies sif(x* \c/2)+ ¢]=0 and thus the relation between
the maximal massn* and the constant,

241502 x* \/E 24/52
* — —
m 2 coé‘( > te Z (32)
ie.,
c=2%%/\Jm*. (33
This allows us to write the boundary condition fio(x) at
1 ‘ : ' X=n:
0 10 20 30 40
position i n \/E
FIG. 14. The velocity distribution in chains of viscoelastic par- m,=m* C0§(7+ ¢ (34)
ticles of lengthn=40 with the optimal mass distribution according
to Fig. 10. Lines give the velocity distribution for the ideal chain equivalently
ansatzp;=1/\Jm; (with masses taken from the optimization data
points show the numerical optimization data o 0.001(top) and nvc m 4
b=0.008 (bottom. Note that for these values of the dissipative —=arcco% —”) — . (35
parameteb, the variational theory gives a very accurate description 2 m*

for the optimal mass distributio(see Fig. 10

Simple analysis shows that<0 if the optimal distribution
comparev(x) obtained by optimization with that from the has a mammunﬁt_hls follows from_ the form of the solution
ansatz. As it is seen from the figure, the ideal chain ansatZ30 and the requirement thai(x) increases at=0]. Thus,
turns out to be rather accurate for small dissipation parametéine obtains from Eqg28) and (33)
b and for the initial part of the chain. It demonstrates, how-
ever, noticeable deviations from the optimization data for <p=—arcco¥(@
largerb, especially at the end of the chain, i.e., fern. This m
is not surprising since it uses an assumption of complete
transmission of energy, which is definitely poor for the veryUsing again Eq(33) for the constant, we recast Eq(35)
end of the chain. On the other hand, as it follows from Figsinto the final form
10 and 11, this ansatz yields rather accurate results when U4
applied to the mass distribution problem. The possible expla- mg

+arcco%(—*> H

mass distribution at the end of the chain(j =n)=m,. This m m
: ! o . (37)
imposes the correct behavior of the mass distribution at this
part of the chain and partly compensates for the inaccuracyhijs scaling relation expresses the produgb in terms of
of the velocity distribution, which develops mainly at the the maximal mass*. For the case of a strongly pronounced

1/4
1 . (36)

1/4

m
— o4/ / n
nation for this follows from the boundary condition for the nyb=2* S(m*)“[ arcco%( "

chain end(see Fig. 14 maximum in the optimal mass distribution, i.e., when
mg/m* <1 andm,/m* <1, one can expand the arccrj{n
C. Scaling laws for the optimal mass distribution Eq. (37) to obtain a linear scaling relation betweem*()'*
andny/b:

Now we analyze how the maximal masg =m(x*) (the
mass of the heaviest sphere located-ax*) in the optimal _ K\ 1/4_
mass distribution depends on the chain lengtmd the dis- n\b p(m™) 9 (38)
sipative parameteb. We show that there exists a simple \yith
scaling relation between these values.

We start from Eq(27) for the optimal mass distribution, p= 245, (39
2452 x+/c _ /5 /Ay /4
m(x) = —,—cos' %—ﬂp : (30) q=2"(mg "+ my"). (40)
c

In Fig. 15 we compare the analytical relati8v) and its
; - . linear approximatior{38) with the results fom*, following
h f Eqs(2 29). Th f ; O o
m; ocp?irr]r?a(f riealsr;ed by Eqs(28) and(29). The condition for from the numerical optimization for the mass distribution for
different chain lengths and different dissipative constants. As
one can see from Fig. 15, the results of the analytical theory
=0 and of the numerical optimization agree well, except for
large dissipation values. We would like to stress that there
(31 are no fitting parameters used.

x*\c

SN 2

29/5b2 X* c
my(x*)=— co§( >t

+e
C3/2
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0 5 10 15 20 25 30
m*

FIG. 15. n\/E as a function ofm* for the chain of viscoelastic
particles with the optimal mass distribution. Hené& is the mass of
the heaviest particle in the chain,is a chain length, and is the
dissipative parameter. In the figure we plottedb over m* for

about 3000 different combinations bfandn (n=2---300, b

PHYSICAL REVIEW E 63 021505

m* ~(nvb/p+a/p)?,

which follows from Eq.(38), one obtains an expliciap-
proximaterelation for the total losses and, thus, for the final
velocity

(46)

2
Mevg 2
12
v'n= — —E(n,b
n mn mn tot( )

(47)

in terms of the chain length and the dissipation conskant
Unfortunately, due to the fact that chains with optimal
lengths obviously do not have a maximum in their mass
distribution, one cannot use the previous relations to estimate
the optimal chain length for a given dissipation constant
since these relations hold true only for chains which do have
a maximum.

Note that since the maximal masg depends only on the
productn/b, the expression in curled brackets on the right-

=0.000% - -0.256) including all data presented in Figs. 6, 7, 10, hand side of Eq(45) also depends only on this combination.

?nnedri iall c\)lv't??n?;‘;t?ong ;d::uhs;ﬁzeap?é:”xetﬁra;itt:?hia;;rlo?il;rixrl"'fhis suggests the following scaling relations for the final
P g y velocity for the chains with fixed /b

pressions Eq37), given by the dashed line. The linear approxima-

tion for the scaling relation, Eq38), is shown by the dotted line.

vi2=m 1-dyb,
Using the optimal mass distribution, E¢30), one can o1,
compute the total energy loss in the chain, as given by Eq. vpt=m, " —d'/n, (48)
22):
2 where we take into account thaiy=1, vy=1, and where
ne Ji—cofe, 1-code d andd’ are some constants which are defined by the par-
SN 2\c cose. cose ticular value ofnyb.

+2y/c{arcsificose,]—arcsifcose]},  (41)

where¢,= nyc/2+ ¢. According to Eq.(30), one obtains

24/5b2
Mmo= coso, (42)
c
24/5b2
my=———cos'e,, (43)
c

which allows us to express all trigonometric functions in Eq.

(41) in terms ofmg andm,,, yielding

l \/22’5b \/22’5b } cn
EIOIZZ — = —C— ———C — TN
b2 mi/2 2

n
and finally, taking into account E@33) for c, we arrive at
the relation for the total losses

1 1
EIOt(an):ZG/S\/B[ J\/m—n_ \/W
n\b
- 2905 % | °

Using the approximation for the maximal mass,

(44)

(49)

V. CONCLUSION

We investigated analytically and numerically the trans-
mission of kinetic energy through one-dimensional chains of
inelastically colliding spheres, where the first and the last
mass are fixed. For the case of a constant coefficient of res-
titution, we found that in the chain with optimal energy
transmission, the mass of each particle is given by the geo-
metric average of its neighbors, i.e., the distribution of the
masses of the spheres is a monotonous, exponentially de-
creasing function. This function is independent of the coef-
ficient of restitutione, where the special case of elastically
colliding particles €=1) is included. We derived an expres-
sion for the chain length* which leads for a giver to the
optimal energy transfeprovided the masses in between the
first and last mass have been chosen properly

The situation changes qualitatively if we assume that the
chain consists of viscoelastic spheres for which the coeffi-
cient of restitution depends on the impact velocity. Here, the
optimal mass distribution which leads to maximum energy
transfer is not necessarily a monotonous function. Depending
on the chain lengtm and on the material parameters of the
spheres, it may reveal a pronounced maximum. We consider
the part of the kinetic energy of the first particle, which has
not been transfered to the last one, as losses of energy. These
losses have been characterized as losses according to incom-
plete transfer of momentum due to mass mismatch of the
particles(inertia lossesand losses due to the dissipative na-
ture of particle collisions(viscous losses We develop a

021505-8
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theory which describes the total energy losses along therhich show how the velocity of the last particle in the chain
chain, so that the optimal mass distribution, minimizing thescales with the length of the chamand with the dissipation
losses, may be obtained as a solution of a variational equaonstanty, for the chain with the value afiyb fixed.
tion. We find a general solution to this nonlinear second- |t has been demonstrated before that for the case of “ther-
order differential equation. Implication of the boundary con-modynamically large” granular systems the impact-velocity
ditions yields, however, a transcendental equation, whickjependence of the restitution coefficient, as it is given for
one needs to solve numericallin practice, we solve nu- yiscoelastic particles, may lead to qualitatively different be-
merically the initial differential equationWe observed that havior as compared to systems with a constant restitution
our variational theory agrees well with the results of the nucoefficient, e.g.[3,9,15. The system investigated here may
merical optimization for the mass distribution, provided theServe as an examp|e of the major influence of the Ve|0city
dissipative material parameter is not too large. We also peldependence of the restitution coefficient even for relatively
formed a direct verification of the basic approximation usedsmall (“lab scale”) and simple systems. Therefore, in gen-
in our variational approqch. o . eral, the assumption of a constant coefficient of restitution is
From the exact solution of the variational equation, wean approximation whose justification cannot be assumed

obtained an analytical expression which relates the heaviegfiori but has to be checked for each particular application.
mass in the mass distribution to the chain length and the

dissipation constant. We found that this analytical expres-
sion, having no fitting parameters, is in good agreement with
the numerical data. Using the exact solution for the optimal
mass distribution, we also found an expression for the total The authors thank Thomas Schwager for valuable discus-
energy losses. This allowed us to obtain scaling relationsions.
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